The ∂̄ - Cauchy problem and nonexistence of Lipschitz Levi - flat hypersurfaces in C Pn with n ≥ 3
نویسندگان
چکیده
In this paper we study the Cauchy–Riemann equation in complex projective spaces. Specifically, we use the modified weight function method to study the ∂̄-Neumann problem on pseudoconvex domains in these spaces. The solutions are used to study function theory on pseudoconvex domains via the ∂̄-Cauchy problem. We apply our results to prove nonexistence of Lipschitz Levi-flat hypersurfaces in complex projective spaces of dimension at least three, which removes the smoothness requirement used in an earlier paper of Siu.
منابع مشابه
Microlocalization and Nonexistence of C 2 Levi-flat Hypersurfaces in Cp 2
Theorem. There exist no C Levi-flat real hypersurfaces in CP . This improves an earlier result of Siu [Si2] where C smoothness is required. For the nonexistence of Levi-flat hypersurfaces in CP with n ≥ 3, Lins-Neto [LN] first proved the nonexistence of real-analytic hypersurfaces in CP. Nonexistence of C Levi-flat hypersurfaces in CP was proved for n ≥ 3 by Siu [Si1]. It is proved in a recent ...
متن کاملEstimates for the ∂̄-neumann Problem and Nonexistence of C Levi-flat Hypersurfaces in Cp*
Let Ω be a pseudoconvex domain with C2 boundary in CPn, n ≥ 2. We prove that the ∂̄-Neumann operator N exists for square-integrable forms on Ω. Furthermore, there exists a number 0 > 0 such that the operators N , ∂̄∗N , ∂̄N and the Bergman projection are regular in the Sobolev space W (Ω) for < 0. The ∂̄-Neumann operator is used to construct ∂̄-closed extension on Ω for forms on the boundary bΩ. Thi...
متن کاملMathematische Zeitschrift Estimates for the ∂̄-Neumann problem and nonexistence of C2 Levi-flat hypersurfaces in CP
Let be a pseudoconvex domain with C2 boundary in CP, n ≥ 2. We prove that the ∂̄-Neumann operator N exists for square-integrable forms on . Furthermore, there exists a number 0 > 0 such that the operators N , ∂̄∗N , ∂̄N and the Bergman projection are regular in the Sobolev space W ( ) for < 0. The ∂̄-Neumann operator is used to construct ∂̄-closed extension on for forms on the boundary b . This give...
متن کاملEstimates for the ∂̄-neumann Problem and Nonexistence of Levi-flat Hypersurfaces in Cp
Let Ω be a pseudoconvex domain with C-smooth boundary in CP. We prove that the ∂̄-Neumann operator N exists for (p, q)-forms on Ω. Furthermore, there exists a t0 > 0 such that the operators N , ∂̄N , ∂̄N and the Bergman projection are regular in the Sobolev space W (Ω̄) for t < t0. The boundary estimates above have applications in complex geometry. We use the estimates to prove the nonexistence of ...
متن کاملOn the Dynamics of Codimension One Holomorphic Foliations with Ample Normal Bundle
We investigate the accumulation to singular points of leaves of codimension one foliations whose normal bundle is ample, with emphasis on the nonexistence of Levi-flat hypersurfaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006